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Abstract: The standard prescription for computing Wilson loops in the AdS/CFT corre-

spondence in the large coupling regime and tree-level involves minimizing the string action.

In many cases the action has more than one saddle point as in the simple example studied

in this paper, where there are two 1/4 BPS string solutions, one a minimum and the other

not. Like in the case of the regular circular loop the perturbative expansion seems to be

captured by a free matrix model. This gives enough analytic control to extrapolate from

weak to strong coupling and find both saddle points in the asymptotic expansion of the

matrix model. The calculation also suggests a new BMN-like limit for nearly BPS Wilson

loop operators.
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1. Introduction

This note deals with a family of circular Wilson loop operators in N = 4 supersymmetric

Yang-Mills theory which have certain couplings to three of the six scalar fields. They may

be written as

Wθ0 =
1

N
TrP exp

[∫ (
iAαẋ

α(τ) + |ẋ(τ)|ΘI(τ)ΦI

)
dτ

]
, (1.1)

where 0 < τ < 2π, the path in space xα(τ) is a circle of radius R

x1 = R cos τ , x2 = R sin τ , (1.2)

and they couple to the three scalars Φ1, Φ2 and Φ3 in the following way

Θ1 = sin θ0 cos τ , Θ2 = sin θ0 sin τ , Θ3 = cos θ0 , (1.3)

with an arbitrary fixed θ0.

These operators were first presented in [1] where they were evaluated using the

AdS/CFT correspondence [2 – 4] by a classical string surface. But these operators are

quite interesting and deserves more attention. As we shall see they preserve 1/4 of the

supersymmetries of the vacuum and by varying θ0 it is possible to interpolate from the

usual circle [5, 6] (at θ0 = 0) that couples to only one of the scalars and preserves half of

the supersymmetries, to the 1/4 BPS circular loop [7] for θ0 = π/2 which couples to two

scalars.

Evaluating these Wilson loops in AdS requires finding a surface which partially wraps

an S2 ⊂ S5. There are two ways to do that, over the northern and southern poles, and

the resulting values of the classical action are ±
√
λ cos θ0 where λ = g2

YMN is the ’t Hooft

coupling. On the gauge theory side evaluating this operator in perturbation theory is very
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similar to the usual circle at θ0 = 0 and at least to 2-loop order is captured by a Gaussian

matrix model [8, 9]. The only modification is the replacement of λ→ λ′ = λ cos2 θ0, hence

the standard agreement of the string calculation with the matrix model result carries over.

What is very intriguing about the AdS calculation is that there is more than one saddle

point. In general one expects the string expansion to be asymptotic, and indeed an extra

exponentially suppressed saddle point is found contributing exp−
√
λ′ to the expectation

value of the Wilson loop. Up to now only the dominant saddle point was considered and

was indeed found also from the matrix model. But at the planar level the matrix model is

given by a Bessel function whose asymptotic expansion at large argument has two saddle

points, which matches the AdS calculation including the subleading one! The rest of the

paper contains the details of this remarkable agreement.

2. Gauge theory calculation

Let us start by calculating those circular Wilson loop observables in perturbation theory.

At order g2
YM one should sum over the gauge field and scalar exchange

〈W 〉 = 1 +
1

2N

∫
dτ1 dτ2 TrT aT b

[
− ẋα(τ1)ẋβ(τ2)Gabαβ(x(τ1), x(τ2))

+ |ẋα(τ1)||ẋβ(τ2)|ΘI(τ1)ΘI(τ2)Gab(x(τ1), x(τ2))
]
.

(2.1)

Here T a are generators of the gauge group and they satisfy T aT a = N/2 × I, where I is

the identity matrix. Gab
αβ is the gauge propagator and Gab the scalar propagator, and in

the Feynman gauge they are given by

Gabαβ(x1, x2) =
g2

YMδαβδ
ab

(x1 − x2)2
, Gab(x1, x2) =

g2
YMδ

ab

(x1 − x2)2
. (2.2)

Therefore at order g2
YM the circle is given by

〈W 〉 = 1 +
g2

YMN

(4π)2

∫
dτ1 dτ2

− cos(τ1 − τ2) + sin2 θ0 cos(τ1 − τ2) + cos2 θ0

4 sin2(τ1 − τ2)/2
. (2.3)

Remarkably, the integrand is a constant, 1
2 cos2 θ0, as in the case studied in [8], which is

recovered by taking θ0 = 0. Thus one finds

〈W 〉 = 1 +
g2

YMN

8
cos2 θ0 +O(g4) . (2.4)

In the case where θ0 = 0 it was shown [8] that the interacting graphs in the Feynman

gauge at order g4 vanish. The same also happens at θ0 = π/2, where the expectation value

of the Wilson loop is unity. Quite remarkably this extends to arbitrary θ0. It is possible to

separate the graphs to contributions associated to Φ3 and those associated to Φ1 and Φ2.

The graphs involving Φ3 will be identical (up to a constant) to those for θ0 = 0 and vanish

by the same calculation of [8]. The graphs involving the other two scalars are the same as

for θ0 = π/2 and will vanish as well.
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So the contribution at order g4
YM comes only from non-interacting graphs, where the

propagator is a constant. It is then reasonable to conjecture that at higher orders inter-

acting graphs still don’t contribute and the full result will be given by the sum of ladders,

as in the case of θ0 = 0 [8, 9].

Under that assumption the Wilson loop will be given by the sum of all non-interacting

diagrams which is easily written in terms of a 0-dimensional Hermitian Gaussian matrix

model. The θ0 dependence will show up in the coupling constant, where replacing λ →
λ′ = λ cos2 θ0 will give the correct normalization of the matrix propagator

〈Wθ0〉ladder =

〈
1

N
Tr exp(M)

〉

0d

=
1

Z

∫
DM 1

N
Tr exp(M) exp

(
−2N

λ′
TrM2

)
. (2.5)

The full large N expansion of this matrix model was given in [9]. The leading result

at large λ is [8]

〈Wθ0〉ladder ∼ exp
√
λ | cos θ0| = exp

√
λ′ . (2.6)

2.1 Supersymmetry

The vacuum of N = 4 super Yang-Mills has 32 supersymmetries which are generated by

the spinors

ε(x) = ε0 + σαx
αε1 , (2.7)

with constant ε0 and ε1. Here σα are the usual Dirac matrices and the equations below

will also involve ρi, which act on the SO(6) indices of ε. The conventions used are those

of dimensionally reduced N = 1 super Yang-Mills in ten dimensions, so all the gamma

matrices σα and ρi anti-commute.

At the linear order the supersymmetry variation of the Wilson loop is proportional to
[
− iσ1 sin τ + iσ2 cos τ + sin θ0(ρ1 cos τ + ρ2 sin τ) + ρ3 cos θ0

]
ε(x) , (2.8)

A Wilson loop will be supersymmetric if the above expression vanishes for some of the

components of ε(x), which in this case is

ε(x) = ε0 +R(σ1 cos τ + σ2 sin τ)ε1 . (2.9)

The resulting equation may be separated into terms with different functional dependence

on τ which should all vanish independently

cos τ : (iσ2 + sin θ0 ρ1)ε0 = −R cos θ0 ρ3σ1ε1 ,

sin τ : (−iσ1 + sin θ0 ρ2)ε0 = −R cos θ0 ρ3σ2ε1 ,

cos τ sin τ : 0 = R sin θ0(ρ2σ1 + ρ1σ2)ε1 ,

cos2 τ : 0 = R sin θ0(ρ1σ1 − ρ2σ2)ε1 ,

1 : cos θ0 ρ3ε0 = R(iσ1 − sin θ0 ρ2)σ2ε1 .

(2.10)

These conditions are not independent. First for sin θ0 = 0 they are all solved as long as ε0

and ε1 are related by

ε0 = iRρ3σ1σ2ε1 . (2.11)

This configurations preserves 1/2 the supersymmetries, but they all involve some of the

super-conformal transformations.
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For sin θ0 = 1 the two constant spinors are not related, rather there are two independent

conditions on each

(iσ2 + ρ1)εa = (iσ1 − ρ2)εa = 0 . (2.12)

Thus this solutions preserves 1/4 of the regular supersymmetries and 1/4 of the super-

conformal ones.

For generic θ0 it is easy to see that all the above equations are satisfied as long as the

following two relations hold

cos θ0ε0 = R(−iσ1 + sin θ0 ρ2)ρ3σ2ε1 ,

(ρ2σ1 + ρ1σ2)ε1 = 0 .
(2.13)

Note that as a consequence the last equation holds also for ε0. The Wilson loop that is

studied here preserves, therefore 1/4 of the supersymmetries.

3. String theory calculation

The description of those Wilson loops by strings in AdS5×S5 was presented in [1] (section

4.3.2), the following is a short review (in a different coordinate system). Use the target

space metric

ds2 = L2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ(dχ2 + cos2 χdψ2 + sin2 χdϕ2

1

)

+L2
(
dθ2 + sin2 θdφ2 + cos2 θ

(
dϑ2

1 + sin2 ϑ1

(
dϑ2

2 + sin2 ϑ2dϕ
2
2

)))
. (3.1)

This is global Lorentzian AdS5 with curvature radius L related to the ’t Hooft coupling

by L4 = λα′2. The circle will follow the coordinate ψ on the equator of the S3 on the

boundary of AdS5. On the S5 side the string will be inside an S2 given by θ and φ (after

doubling the range of θ to [0, π] at the expense of ϑ1). Using the ansatz

ρ = ρ(σ) , ψ(τ) = τ , θ = θ(σ) , φ(τ) = τ , t = χ = ϑ1 = 0 , (3.2)

leads to the action in conformal gauge

S =
L2

4πα′

∫
dσ dτ

[
ρ′2 + sinh2 ρ+ θ′2 + sin2 θ

]
. (3.3)

The equations of motion are

ρ′′ = sinhρ cosh ρ ,

θ′′ = sin θ cos θ ,
(3.4)

and the Virasoro constraint reads

ρ′2 + θ′2 = sinh2 ρ+ sin2 θ . (3.5)

The first integral for ρ is

ρ′2 − sinh2 ρ = c , (3.6)
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and to get a surface that corresponds to a single circle and not the correlator or two one

has to set c = 0, so the solution is

sinhρ(σ) =
1

sinhσ
. (3.7)

An integration constant in this equation that shifts σ was set to zero so the boundary of

the world-sheet at σ = 0 is at the boundary of AdS5. Then the first integral for θ is

θ′2 = sin2 θ , (3.8)

which is solved by

sin θ(σ) =
1

cosh(σ0 ± σ)
, cos θ(σ) = tanh(σ0 ± σ) . (3.9)

In this equation the integration constant σ0 is important, it is fixed by the boundary

condition that at σ = 0

cos θ0 = tanhσ0 . (3.10)

Depending on the sign in (3.9) the surface extends over the north or south pole of S 5.

The bulk part of the classical action is proportional to the area

Sbulk =
√
λ

∫
dσ
(
sinh2 ρ+ sin2 θ

)
=

∫
dσ

(
1

sinh2 σ
+

1

cosh2(σ0 ± σ)

)

=
√
λ (coth σmin ∓ tanhσ0) =

√
λ (cosh ρmax ∓ cos θ0) .

(3.11)

Here σmin is a cutoff on σ and ρmax the corresponding cutoff on ρ. This divergent part is

canceled by an extra boundary term in the action [6], so the final result is

S = ∓ cos θ0

√
λ . (3.12)

The two signs correspond to a string extended over the north or south poles of S 2. From

this one finds that the expectation value of the Wilson loop at strong coupling is given by

〈W 〉 ∼ exp
[
± cos θ0

√
λ
]
, (3.13)

and the sign should be chosen to minimize the action.

3.1 Supersymmetry

In order to check supersymmetry choose the vielbeins (only for the directions that are

turned on)

e1 = Ldρ , e3 = L sinh ρ dψ , e5 = Ldθ , e6 = L sin θ dφ . (3.14)

Γa will be ten real constant gamma matrices and define γµ= eaµΓa and Γ?= Γ0Γ1Γ2Γ3Γ4

the product of all the gamma matrices in the AdS5 directions. With this the dependence of

the Killing spinors on the relevant coordinates may be written as (see for example [10 – 13])

ε = e−
i
2
ρΓ?Γ1e

1
2
ψ Γ13e−

i
2
θ Γ?Γ5e

1
2
φΓ56ε0 , (3.15)
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where ε0 is a chiral complex 16-component spinor. This satisfies the Killing spinor equation1

(
Dµ +

i

2L
Γ?γµ

)
ε = 0 . (3.16)

The projector associated with a fundamental string in type IIB is

Γ =
1√
g
∂τx

µ∂σx
νγµγνK , (3.17)

where g is the induced metric on the world-sheet and K acts on spinors by complex conjuga-

tion. The number of supersymmetries preserved by the string is the number of independent

solutions to the equation Γε = ε.

For the two solutions (the signs correspond to the two choices in (3.9))

Γ =
1

sinh2 ρ+ sin2 θ

(
sinh2 ρΓ13 ± sin2 θΓ56 + sinhρ sin θΓ16 ± sinhρ sin θ Γ53

)
K . (3.18)

The equation has to hold for all σ and τ . Since Γ13 commutes with Γ?Γ5 and with Γ56 and

also Γ?Γ1 commutes with Γ?Γ5 one may write the Killing spinor as

ε = e−
i
2
ρΓ?Γ1− i

2
θ Γ?Γ5e

1
2
τ(Γ13+Γ56)ε0 . (3.19)

Note that Γ does not depend on τ , the only place τ appears in the projector equation

is in the second exponential of this expression for the Killing spinors. To eliminate this

dependence impose the condition

(Γ13 + Γ56)ε0 = 0 . (3.20)

Now commuting the terms in the projector Γ through the remaining exponential

in (3.19), remembering that K acts by complex conjugation, one gets

Γε =
1

sinh2 ρ+ sin2 θ

[
e−

i
2
ρΓ?Γ1+ i

2
θΓ?Γ5

(
sinh2 ρΓ13 ± sinh ρ sin θΓ53

)

+ e
i
2
ρΓ?Γ1− i

2
θΓ?Γ5

(
± sin2 θΓ56 + sinhρ sin θ Γ16

) ]
Kε0 .

(3.21)

Next note that by factoring out by the remaining exponential in the Killing spinor, the

projector equation Γε = ε reduces to an equation on the constant spinor Γ̄ε0 = ε0 with

Γ̄ =
1

sinh2 ρ+ sin2 θ

[
eiθ Γ?Γ5

(
sinh2 ρΓ13 ± sinhρ sin θΓ53

)

+ eiρΓ?Γ1
(
± sin2 θ Γ56 + sinh ρ sin θΓ16

) ]
K

(3.22)

By expanding the exponentials and using (3.20) the projector equation becomes

Γ̄ε0 =
1

sinh2 ρ+ sin2 θ

[
(cos θ sinh2 ρ∓ cosh ρ sin2 θ) Γ13

+ (cos θ ± cosh ρ) sin θ sinhρΓ16

]
Kε0 .

(3.23)

1Dµ = ∂µ+ 1
4
ωabµ Γab and the only relevant non-zero components of the spin-connection are ω13

ψ = − cosh ρ

and ω56
φ = − cos θ.
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Replacing the solutions for ρ(σ) (3.7) and θ(σ) (3.9)

Γ̄ε0 =
1

cosh σ0

[
sinhσ0 Γ13 + Γ16

]
Kε0 =

[
cos θ0 Γ13 + sin θ0Γ16

]
Kε0 . (3.24)

Half the eigenvalues of this matrix (for generic σ0) are one and it commutes with Γ1356, so

the two projections are compatible and the string solution preserves 1/4 of the supersym-

metries.

Note that the final expression does not depend on whether the surface extends over

the north or south pole of the S2 and depends only on θ0. Therefore both those surfaces

preserve the same supersymmetries which are the same as those found on the gauge theory

side.

4. Discussion

The family of Wilson loop operators considered in this note preserve 1/4 of the supersym-

metries of the vacuum and allow to do some very interesting calculations. On the gauge

theory side it was easy to calculate them to order g4
YM and the result is the same as for

the 1/2-BPS loop [8] with the replacement λ → λ′ = λ cos2 θ0. It is therefore natural

to conjecture that the final result is given by the same matrix model as in [9] with this

replacement.

On the string theory side two classical string solutions describing this Wilson loop

were found and both preserved the same supersymmetry. For generic θ0 the action of those

two surfaces is not equal, rather they have the opposite signs. It is quite common to find

more than one saddle point to the string equations of motion [1] and there are indeed more

solutions here one gets by adding extra wrappings of the sphere, but those would not be

supersymmetric.

These non-supersymmetric saddle points of the string action will not contribute to the

same expectation values as the supersymmetric ones due to having extra fermionic zero

modes. So if the two surfaces found here are indeed the only supersymmetric world-sheets

satisfying the correct boundary conditions, the Wilson loop expectation value will have a

semiclassical expansion at large λ as

〈Wθ0〉 ∼ e
√
λ′ + e−

√
λ′ . (4.1)

Recall that at the planar level2 the Gaussian matrix model is given by Wigner’s semi-

circular distribution

〈Wθ0〉ladder =
2

πλ′

∫ √λ′

−
√
λ′
dx
√
λ′ − x2 ex =

2√
λ′
I1

(√
λ′
)
, (4.2)

where I1 is the modified Bessel function. Using the asymptotic expansion of the Bessel

function at large λ′ one finds the result that should be reproduced by semiclassical super-

2For some results beyond the planar level see [14, 15]
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gravity

〈Wθ0〉ladder =

√
2

π

e
√
λ′

λ′3/4

∞∑

k=0

( −1

2
√
λ′

)k Γ(3
2 + k)

Γ(3
2 − k)

− i
√

2

π

e−
√
λ′

λ′3/4

∞∑

k=0

(
1

2
√
λ′

)k Γ(3
2 + k)

Γ(3
2 − k)

.

(4.3)

This expression represents two saddle points with classical action ±
√
λ′, exactly as was

found here from string theory3. The asymptotic expansion includes an infinite series of

perturbative corrections in inverse powers of
√
λ′ which should be found by doing the

world sheet perturbation expansion around those solutions as was pursued in [16].

Note that on S5 there are three transverse directions to the S2. Around the minimum

of the action those directions are massive, but not around the other saddle point. Turning

on those deformations of the surface will cause it to “slip” away from that pole. Those

three modes are tachyonic and each contributes a factor of i to the fluctuation determinant.

This too is matched by the results of the asymptotic expansion, where the second term

in (4.3) is imaginary.

Clearly the term with negative exponent will never dominate the action and its con-

tribution is smaller than any of the (λ′)−k/2 corrections to the leading term. It’s quite

miraculous that it was possible to fit this term between the perturbative gauge theory

calculation and string theory. Such results are often associated with localization theorems,

which may be the case here due to the large number of supersymmetries preserved by this

Wilson loop.

One can go much further than the semiclassical string calculation. It is possible to

take λ large, so the string theory is still on a low curvature background while keeping

λ′ = cos2 θ0λ small, in a fashion similar to the BMN limit [17]. For cos θ0 = 0 Zarembo’s

solution [7] has three zero modes parameterizing an S3 with measure

dΩ3 =
1

2π2
dα sin2 α dΩ2 , (4.4)

where the range of α is [0, π] and Ω2 is the measure on an S2 that remains unbroken for

nonzero cos θ0. Turning on cos θ0 leads to a potential cosα cos θ0

√
λ, so the integration

over the broken zero modes gives for the Wilson loop

〈Wθ0〉 =
2

π

∫ π

0
dα sin2 α e− cosα

√
λ′ . (4.5)

This is exactly equal to the result of the matrix model at the planar level (4.2). Here it

is reproduced from perturbative string theory by the inclusion only of the zero modes. It

would be interesting to see if this kind of BMN-like limit generalizes to other deformations

of supersymmetric Wilson loops.

Recently the AdS description of the supersymmetric Wilson loops of the type con-

structed by Zarembo [7] was found [18]. Those operators preserve the regular Poincaré

supersymmetries and have trivial expectation values [19, 20], but there should be many

3Those saddle points come from the semiclassical evaluation of the integral in (4.2) around the two

endpoints.
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more supersymmetric Wilson loops which preserve other combinations of the regular and

conformal supersymmetry generators. Those include the ones studied in this paper as well

as some deformations of the line or circle by insertion of local operators as in [21]. There

is a very rich structure of supersymmetric Wilson loops that is worth exploring.

Clearly some of the usual intuitions about supersymmetry does not apply to those

combinations of regular and conformal supersymmetries. Here there is an unstable surface

that preserves some supersymmetry.

In the case of the 1/2 BPS circle with θ0 = 0 it is possible to map it to the line which

preserves a regular supersymmetry and whose expectation value is trivial. For other values

of θ0 the resulting line operator will not be trivial, rather it will be given by the path

x1 = τ , (4.6)

for τ ∈ R and the coupling to the scalars is given by4

Θ1 = sin θ0
τ2 − 1

τ2 + 1
, Θ2 = sin θ0

2τ

τ2 + 1
, Θ3 = cos θ0 . (4.7)

It is possible to study this operator both in AdS and at weak coupling. By doing a

conformal map on the AdS solution one finds a new surface with action

S =
√
λ(1∓ cos θ0) . (4.8)

The difference between the circle (3.12) and this case is
√
λ in agreement with a general

argument [9] that whenever a conformal transformation maps a compact Wilson loop to

a non-compact one the ratio of the Wilson loop VEVs is universal. This ratio is fixed to

exp
√
λ (or more generally to the result of the matrix model) by considering the example

of θ0 = 0.

On the gauge theory side at one-loop the expectation value of the line is

〈W 〉 = 1− g2
YMN

8
sin2 θ0 , (4.9)

which also agrees with this general argument. Note that unless θ0 = 0, the supersymmetries

preserved by this line all involve the superconformal generators, and it is impossible to find a

map that will turn them into operators annihilated purely by combinations of the Poincaré

supersymmetry generators.

Another recent development in the study of Wilson loops is the renewed interest in the

description of them in terms of D-branes [3, 14, 15, 23 – 25]. It would be very interesting

to find the relevant solutions for the 1/4 BPS Wilson loops, see if there are two solutions

also for the DBI action, and study the 1/N corrections to the two saddle points.

4This is different from the periodic couplings along the line considered in [22, 1], which were not super-

symmetric
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